Rapid folding of calcium-free subtilisin by a stabilized pro-domain mutant.
نویسندگان
چکیده
In vitro folding of mature subtilisin is extremely slow. The isolated pro-domain greatly accelerates in vitro folding of subtilisin in a bimolecular reaction whose product is a tight complex between folded subtilisin and folded pro-domain. In our studies of subtilisin, we are trying to answer two basic questions: why does subtilisin fold slowly without the pro-domain and what does the pro-domain do to accelerate the folding rate? To address these general questions, we are trying to characterize all the rate constants governing individual steps in the bimolecular folding reaction of pro-domain with subtilisin. Here, we report the results of a series of in vitro folding experiments using an engineered pro-domain mutant which is independently stable (proR9) and two calcium-free subtilisin mutants. The bimolecular folding reaction of subtilisin and proR9 occurs in two steps: an initial binding of proR9 to unfolded subtilisin, followed by isomerization of the initial complex into the native complex. The central findings are as follows. First, the independently stable proR9 folds subtilisin much faster than the predominantly unfolded wild-type pro-domain. Second, at micromolar concentrations of proR9, the subtilisin folding reaction becomes limited by the rate at which prolines in the unfolded state can isomerize to their native conformation. The simpliest mechanism which closely describes the data includes two denatured forms of subtilisin, which form the initial complex with proR9 at the same rate but which isomerize to the fully folded complex at much different rates. In this model, 77% of the subtilisin isomerizes to the native form slowly and the remaining 23% isomerizes more rapidly (1.5 s-1). The slow-folding population may be unfolded subtilisin with the trans form of proline 168, which must isomerize to the cis form during refolding. Third, in the absence of proline isomerization, the rate of subtilisin folding is rapid and at [proR9] 3 s-1. The implications of these results concerning why subtilisin folds slowly without the pro-domain are discussed.
منابع مشابه
Engineering the independent folding of the subtilisin BPN' pro-domain: correlation of pro-domain stability with the rate of subtilisin folding.
The 77-amino acid pro-domain greatly accelerates the in vitro folding of subtilisin in a bimolecular reaction whose product is a tight complex between folded subtilisin and folded pro-domain. In this complex the pro-domain has a compact structure with a four-stranded antiparallel beta-sheet and two three-turn alpha-helixes. When isolated from subtilisin, however, the pro-domain is 97% unfolded ...
متن کاملCa2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding.
Subtilisin from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 is a member of the subtilisin family. T. kodakaraensis subtilisin in a proform (T. kodakaraensis pro-subtilisin), as well as its propeptide (T. kodakaraensis propeptide) and mature domain (T. kodakaraensis mat-subtilisin), were independently overproduced in E. coli, purified, and biochemically characterized. T. kodak...
متن کاملFolding pathway mediated by an intramolecular chaperone. The inhibitory and chaperone functions of the subtilisin propeptide are not obligatorily linked.
The subtilisin propeptide functions as an intramolecular chaperone (IMC) that facilitates correct folding of the catalytic domain while acting like a competitive inhibitor of proteolytic activity. Upon completion of folding, subtilisin initiates IMC degradation to complete precursor maturation. Existing data suggest that the chaperone and inhibitory functions of the subtilisin IMC domain are in...
متن کاملProtein Folding Mediated by an Intramolecular Chaperone: The Energy Landscape for Unimolecular Pro-Subtilisin E Maturation
Efficient and precise assembly of polypeptides into native functional states is critical for normal cellular processes. Understanding how a specific structure is encoded in the polypeptide sequence and what drives the structural progression to the native state is essential to deciphering the folding problem. Several prokaryotic and eukaryotic proteins require their propeptide-domains to functio...
متن کاملSolution structure of the pro-hormone convertase 1 pro-domain from Mus musculus.
The solution structure of the mouse pro-hormone convertase (PC) 1 pro-domain was determined using heteronuclear NMR spectroscopy and is the first structure to be obtained for any of the domains in the convertase family. The ensemble of NMR-derived structures shows a well-ordered core consisting of a four-stranded antiparallel beta-sheet with two alpha-helices packed against one side of this she...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 38 26 شماره
صفحات -
تاریخ انتشار 1999